Part I. Machine Learning Tools and Techniques: 1. What's iIt all about?; 2. Input: concepts, instances, and attributes; 3. Output: knowledge representation; 4. Algorithms: the basic methods; 5. Credibility: evaluating what's been learned
Part II. Advanced Data Mining: 6. Implementations: real machine learning schemes; 7. Data transformation; 8. Ensemble learning; 9. Moving on: applications and beyond
Part III. The Weka Data MiningWorkbench: 10. Introduction to Weka; 11. The explorer
12. The knowledge flow interface; 13. The experimenter; 14 The command-line interface; 15. Embedded machine learning; 16. Writing new learning schemes; 17. Tutorial exercises for the weka explorer.
Data mining : practical machine learning tools and techniques by I. H. Witten. ISBN 9780123748560. Published by Morgan Kaufmann in 2011. Publication and catalogue information, links to buy online and reader comments.