Chapter 1. Introduction to Local Fractional Derivative and Local Fractional Integral Operators
1.1. Definitions and Properties of Local Fractional Derivative
1.2 Definitions and Properties of Local Fractional Integral
1.3 Local Fractional Partial Differential Equations in Mathematical Physics
References
Chapter 2. Local Fractional Fourier Series
2.1. Definitions and Properties
2.2. Applications to Signal Analysis
2.3 Solving Local Fractional Differential Equations
2.3.1. Applications of Local Fractional Ordinary Differential Equations
2.3.2. Applications of Local Fractional Partial Differential Equations
References
Chapter 3. Local Fractional Fourier Transform and Its Applications
3.1. Definitions and Properties
3.2. Applications to Signal Analysis
3.3 Solving Local Fractional Differential Equations
3.3.1. Applications of Local Fractional Ordinary Differential Equations
3.3.2. Applications of Local Fractional Partial Differential Equations
References
Chapter 4. Local Fractional Laplace Transform and Its Applications
4.1. Definitions and Properties
4.2. Applications to Signal Analysis
4.3 Solving Local Fractional Differential Equations
4.3.1. Applications of Local Fractional Ordinary Differential Equations
4.3.2 Applications of Local Fractional Partial Differential Equations
References
Chapter 5. Local Fractional Laplace Transform Method Coupled with Analytical Methods
5.1. Variational Iteration Method of Local Fractional Operator
5.2. Decomposition Method of Local Fractional Operator
5.3. Coupling Laplace Transform with Variational Iteration Method of Local Fractional Operator
5.4. Coupling Laplace Transform with Decomposition Method of Local Fractional Operator
References
Local fractional integral transforms and their applications by Xiao-Jun Yang. ISBN 9780128040324. Published by Academic Press in 2015. Publication and catalogue information, links to buy online and reader comments.